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The equilibrium structure of classical Coulomb systems bounded by a plane 
hard wall is studied near that wall. A general sum rule is derived for the 
asymptotic form of the charge-charge correlation function along the wall. The 
exact results which can be obtained for the two-dimensional one-component 
plasma provide a test for this new sum rule, as well as for other already known 
sum rules or their generalizations. 
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1. INTRODUCTION 

Near a charged wall, a Coulomb fluid forms a charged layer of opposite 
sign. The structure of this double electric layer currently attracts much 
interest. 

In a previous paper (1) [hereafter referred to as I; equations from I are 
referred to as (I.l.1), etc.] the equilibrium structure of classical Coulomb 
systems bounded by a (possibly charged) plane wall was studied near that 
wall for several models. Only the simplest case of a hard wall with no image 
forces was considered. It was found that, along the wall, the pair correla- 
tion functions decay slowly, only as an inverse power of the distance r, 
namely, as r - "  for a u-dimensional system (p - -2 ,  3). One of the models 
which were studied is the two-dimensional one-component plasma, which 
happens to be exactly soluble (2-4) for the special value of the coupling 
constant r = 2. 
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Smith, who studied independently the surface properties of this 
model, (5) also obtained exact results in a case with image forces. (6) He 
assumed that the dielectric constant of the wall is zero. In that case, images, 
carrying charges of the same sign and magnitude as the real particles, are 
set up in the wall; the model is still soluble when I" = 2. 

The present paper deals with several sum rules for the distribution 
functions of a classical Coulomb system near a plane charged hard wall; 
image forces may be present. The sum rules, which are of general valid- 
ity, are checked on specific models, and more especially on the two- 
dimensional one-component plasma. 

In Section 2, we (heuristically) derive a sum rule for the asymptotic 
behavior of the charge-charge correlation function in the direction parallel 
to the wall. In Section 3, we check this sum rule for several specific models. 
In Section 4, we discuss the structure of the screening cloud around a given 
particle, and show how it is related to suitable generalizations of the sum 
rules of Gruber et al.(7); we also show that Smith's results are consistent 
with the sum rule of Blum et al. (s) for the dipole moment of the pair 
correlation function near a charged wall. Section 5 generalizes a known 
relation between the bulk pressure and the distribution functions near the 
wall. 

Only the case of a fluid phase is considered here. 

2. ASYMPTOTIC BEHAVIOR OF THE CHARGE-CHARGE 
CORRELATION FUNCTION ALONG A PLANE WALL 

2.1. Results 

We consider a fluid made of several species of charged particles, 
embedded in a medium the dielectric constant of which is e. The system 
may be either three dimensional or two dimensional; let v (v -- 2, 3) be the 
dimensionality. Two particles of charges e~ and e 2, at a distance r from one 
another, interact through a Coulomb potential e~e2/er if v = 3, or 
- ( e r e 2 / e ) l n ( r / L  ), where L is an (irrelevant) length scale, if v = 2. In 
addition, short-range forces between the particles will also be present in 
general. The system is a semi-infinite one, which occupies the half-space 
x > 0; we call y the coordinate(s) normal to x. 

The plane x = 0 is a hard wall, which may be charged, carrying a 
uniform surface charge density. We assume the half-space x < 0 to be 
filled with a material the dielectric constant of which is e W. Therefore, 
a particle of charge e at the point (x, y) has an electrical image of charge 
[(~ - Cve)/(c + ew)]e at the point ( - x ,  y). 
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Let the microscopic charge density at the point (x, y) be 

C(x, y) = ~,, e,~8(x - xi~)8(y - yi.) (2.1) 
i a  

where (xi~, Yi~) are the coordinates of particle i of species a and e~ is its 
charge. Let the canonical average charge density be 

c(~)(x) = ( C(x, y)) (2.2) 

and the canonical average double charge density be 

c(2)(x, x', lY' - Yl) = (C(x ,  y)C(x' ,  y '))  (2.3) 

We also define a truncated double charge density 

c(r2)(x, x', [Y' - 3'1) = c(Z)(x, x', lY' - Y[) - c(l)(x)c(l)(X') (2.4) 

For the asymptotic behavior of c(r 2) along the wall, we claim the 
following sum rule: 

c ( r2 ) ( x , x ' , l y ' - y [ )~F(x , x ' , l y ' - y l ) ,  when [y'-yl--->oo (2.5) 

where the asymptotic expression F is a function integrable upon x and x' 
obeying 

cwk B T 
f " x ~  d x F ( x , x ' , l y ' - y [ ) = -  

2 [ ( ,  - l)rr]2Iy ' -  YI" d O  . . '0  

k B is Boltzmann's constant and T the temperature. 
A stronger statement, that we 

following: 

f(x,x') 
c~ 2~ (x,x ' ,  [y' - Yl)~ ~~v _-- ~~ , 

, ( .  = 2, 3)  

(2.6) 

present only as a conjecture, is the 

when lY' - Yl --> m, (v = 2, 3) 

(2.7) 

where f (x ,  x') is an integrable function obeying 

, ~ , ewk sT  s .Xfoo .x:(x,x>= ('="3> 

Obviously, (2.7) and (2.8) imply (2.5) and (2.6), but the reverse is not true. 
In the special extreme case E w = O, the coefficient of the algebraic tail 

IY' - YI-" in (2.6) or (2.8) vanishes; we conjecture that the decay becomes 
faster than any inverse-power law. 
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The other extreme case e w = ~ corresponds to a perfectly conducting 
wall; we have no valid results in that case. 

2.2, Derivation 

The (heuristic) derivation we shall give for (2.5), (2.6) is based on a 
perfect-screening argument in the long-wavelength limit, closely related to 
similar arguments used in bulk systems. (9) We phrase the argument for a 
three-dimensional system; only minor modifications in the numerical fac- 
tors are required for dealing with a two-dimensional system. 

First, we relate the double charge density and the linear response to an 
external charge density. In addition to the uniform surface charge density 
which may be carried by the wall, we put on it a periodic external surface 
charge density of the form a exp(il �9 y). This surface charge density creates 
an electrostatic potential 

4~_q exp( i l  (2.9) �9 (x,y) - (e + ew)l "Y - llx[) 

it is indeed easy to check that the Laplacian of r vanishes outside the plane 
x = 0, that ~ is continuous on that plane, and that the normal component 
of the electrical displacement has the proper jump 4~ra exp(il, y) on that 
plane. Therefore, the external charge density is coupled to the charge 
density (2.1) of the fluid; the Hamiltonian acquires an additional term 

 I-r= f dy'foo  dx' q,(x',y')C(x',y') (2.10) 

From the definition of the canonical average of any observable A, one 
derives the linear response relation 

3(A)~Oa ==0 = - f l ( (AH' )  - ( A ) ( H ' ) )  (2.11) 

where/3 = 1/kBT; ( )~ denotes a canonical average taken in presence of 
the term all '  in the Hamiltonian, and ( ) denotes a canonical average 
taken at a -- O. 

Let us now use for A the integrated charge density 

A -- fo~dX C(x, y) (2.12) 

In the long-wavelength (macroscopic) limit l-->0, we expect that every 
element of the external surface charge density will be perfectly screened by 
charges in the fluid surface layer adjacent to this element: 

(A)~ - ( A ) ~  - aexp( i l -y ) ,  when I-->0 (2.13) 
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This is our basic assumption. Using it in (2.11), we obtain 

f dY' foo ~176 exp[ i l - ( y ' -  y ) -  lx'] fo ~176 dxc(r 2) (x,x ' ,  ]y' - y]) 

(c + ew)kBT 
4~r l, when 1 4 0  (2.14) 

It is convenient to subtract from (2.14) a bulk contribution which comes 
from the large values of x'. Far away from the wall, c(r 2) becomes the bulk 
double-charge density, and its Fourier transform (which is essentially the 
charge density structure factor) has a well-known long-wavelength behav- 
ior, (l~ obtained by a perfect-screening argument in the bulk: 

fdy '  exp[ il �9 (y' - y) ] x, lim+ oo fo~176 c(r 2) (x,x', [y' - Yl) 

EkB T 2 
l , when l ~  0 (2.15) 

Therefore 

f dY' fo~dX' exp[ il �9 (y' - y) - IX'Ix, lira ~ fo ~ dx c(r 2~ (x, x', ] y ' -  Yl) 

ek B T 
l, when I ~ 0  (2.16) 

4~r 

It is also possible to derive (2.16) directly by an argument similar to the one 
leading to (2.14), but assuming that the bulk fluid occupies both sides of the 
plane x = O. 

Subtracting (2.16) from (2.15), we obtain 

fdY'fo~176 exp[il" (y' - y ) - Ix'] 

x ,y,  y, x m ly'- Y' t 
EwkB T 

4 ~ l ,  when l ~ 0  (2.17) 

The last bracket in the left-hand-side of (2.17) goes to zero as x' increases, 
on a microscopic length scale which is the thickness of the surface region. 
Therefore, in the limit 1 4 0 ,  the factor exp ( -  Ix') may be omitted (note that 
this factor exp( - Ix ' )  cannot be omitted in (2.14) where it is needed for the 
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integral to be convergent). One obtains 

fdy '  exp[ ii �9 (y' - y)] foo~dX'[foo~dXc(rZ)(x,x',[y'-y[) 

- x lira+ ~ ~0 ~dx c~ 2) (x,x', [ y ' -  Yt)] 

Ewk B T l, 
"~ 4~" when l-->0 (2.18) 

The function of 1 defined by (2.18) is the Fourier transform of a 
function of y' - y. The function of I has a kink at 1 = 0 which governs the 
asymptotic behavior of the function of y ' - y ;  this asymptotic behavior 
is ol) 

foo~dX'[fo~dXe~z)(x,x',ly'-yl) - 

Ewk B T when 
8~21y ' - yl 3 ' 

lim fo~dX c~ 2) (x,x', IY'- Yl)] 
XI--> -I- O0 

ly' - y[--> oo (2,19) 

We expect that long-range correlations are a specific surface feature and 
that the bulk term 

lira (~dx  c(r 2) (x, x', lY' - Yl) 
J 0  

has a faster decay as a function of lY'-Yl and does not contribute to 
the asymptotic behavior. Therefore, (2.19) and its analog in the two- 
dimensional case lead to the sum rule expressed by (2.5) and (2.6). 

In the special case c w = 0, the kink term (ewkBT/4~r)l in (2.18) 
vanishes. This suggests that c(r 2) might have no algebraic tail as a function 
of IY' - Yl in that case. 

A perfectly conducting wall would be described by an infinite value of 
ew- In that extreme case, our whole argument breaks down, because (2.9) 
vanishes and therefore the external periodic surface charge density is not 
coupled to the system. 

The argument leading to (2.14) can be slightly modified for studying 
the charge-charge correlation function for a system of particles confined 
in a two-dimensional plane and interacting through the usual three- 
dimensional Coulomb potential ele2/r. One obtains 

kBT 
fdy'exp[il .(y'-y)]c~2)(ly'-y]),-. ,-~-l,  when I-->0 (2.20) 

and 

kBT when [y' - Yl --~ m (2.21) c~r 2) (lY' - Y[)~ 4Cly '  - yl 3 ' 
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where c(r2)([y ' -  Yl) now is the truncated double surface charge density. 
Since no bulk term has to be subtracted, (2.20) ad (2.21) differ by a factor 2 
from their counterparts (2.18) and (2.19). 

3. SPECIFIC MODELS 

3.1. Plain Hard Wall (No Image Forces) 

In I, we studied one-component plasmas near a hard wall, in the case 
= c W = 1. In such a case, there are no image forces. For a one-component 

plasma, made of particles of charge e and bulk number density p embedded 
in a background of charge density - e o ,  the truncated double-charge 
density (2.4) is 

c~ 2) (x, x' ,  [y' - Y[) - e2p <~)(x, y)~(x' - x)6(y' - y) + e2p(T2) (X, X', lY' - Y[) 

(3.1) 

where p(l) and p~2) are the one-body and truncated two-body number 
densities. The asymptotic form of c~r 2) is the same as the asymptotic form of 
e2p(T2). 

For the two-dimensional one-component plasma, when the coupling 
constant F = fie 2 has the special value F = 2, the asymptotic behavior of 
p~2) near a hard wall (which may carry a uniform "surface" charge density 
- e o )  is given by 0.2.2l). For a two-dimensional or three-dimensional 
one-component plasma in the weak-coupling limit, p(r 2) is equivalent to p2h, 
and the asymptotic behavior of the pair correlation function h near an 
(uncharged) hard wall is given by (I.3.15). It is straightforward to check 
that the sum rule of Section 2, in its strong form (2.7), (2.8), is indeed 
satisfied in these cases. 

In the weak-coupling limit, the case of a symmetrical two-component 
plasma was also considered in I; the pair correlation functions were found 
to be essentially the same as in the one-dimensional case, except for 
changes in the numerical factors. Again, it is straightforward to check that 
the sum rule (2.7), (2.8) is satisfied. 

3.2. Hard Wall with Zero Dielectric Constant 

Smith (6) studied the two-dimensional one-component plasma near an 
uniformly charged hard wall which has a dielectric constant e w = O; the 
plasma is embedded in a medium of finite dielectric constant E. For the 
other quantities, we shall use here the notations of our paper I; in these 
notations, the unit of length is the average interparticle distance, and 
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therefore the bulk number density O is ~r-I. When the coupling constant 
r = fle2/e has the special value r = 2, the one-body number density can be 
written as 

2 e x p [ - 2 ( x  + ~ro 2 ~ Q(t) p(l)(x) = p---~ ) ] f '_~ d texp( - t2 ) s inhzx t '~  (3.2) 

where 

= _  2 ~ ~rov~') ]sinhZ~t 4 e x p ( - t  )fo d~'expI-(~" + 2 Q( t) xf~ 

= exp(-2~rot~-) [  1 + ~ ( t -  ~rof2-)] 

- exp(2~rot~')[ 1 - qS(t + 7ro~-) ] (3.3) 

is the error function 

qb(t) = 2 ~ t exp (_  f )  df  (3.4) 
N 0  

and - e o  is the "surface" charge density on the wall. The truncated 
two-body number density is 

p(T 2) (X, X', [.yt __ y[) 

= - e x p [ - ( x ' -  x) 2 -  ( y ' - y ) 2 ]  

• ( [p(0[(x + x ' +  i ] y ' - y l ) / 2 ] [  2 

- e x p ( - 4 x x ' -  8~rox)lo(O[(x ' -  x + i i y ' - y [ ) / 2 ] [  2} (3.5) 

The asymptotic behaviors of these distribution functions are studied in 
Appendix A with the following results. As x ~ m ,  O ~  decays 
essentially like a Gaussian. The asymptotic behavior of p(r2)(x,x ', [Y ' -Y l )  
when both points (x, y)  and (x', y ')  are far away from the wall (x, x' >> 1, 
for given values of x - x' and y - y ' )  is the bulk function: 

O(T2)(x,x',lY ' - Y ] ) - -  - 0 2 e x p [ - - ( x ' -  x) 2 - (y '  _) ,)2] (3.6) 

The asymptotic behavior of 0(r 2) (x, x', [y' - y[) as (x', y') recedes to infinity 
while (x, y)  stays at a fixed position depends upon the direction. If (x', y') 
recedes in the direction normal to the wall, 0(r 2) decays like e x p [ - ( x ' -  
x)2]; in an oblique direction, 0(r 2) decays faster than e x p [ - ( x '  - x)2]. But, 
for a direction parallel to the wall (x and x' keep fixed values while 
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[Y' - Yl oo), 2) decays only with exponentially damped oscil lat ions:  

p(T 2) (X, X t, [y '  -- Yl) 

- - -  A e x p I - 2 ( x  + ~ro) 2 -  2(x'  + 7to) 2 -  bly'-yl] 
X {e xp [a (x  + x')]cos[aly'-yl + b(x + x') + ~] 

+ e x p [ -  a (x  + x ' )]cos[aly ' -y l -  b(x + x') + ,p] 

- exp[ a ( x ' -  x)lcos[ a[y ' -  Yl + b ( x ' -  x) + cp] 

- e x p [ - a ( x ' -  x)]cos[a[y'- y[ - b ( x ' -  x) + rp]} (3.7) 

where A, a, b, cp are constants (A, a, b > 0). In the special case o = 0 of an 
uncharged wall, A = ~r202 (=  1 in our units), a = 2.051, b = 2.660, q~ = 0. 

Therefore, this soluble case supports the conjecture that c(r 2) has no 
algebraic tail as a function of lY' -Y[ in the case e w = 0. 

4. ELECTRICAL MOMENTS OF THE SCREENING CLOUD 

4.1. Systems with No Image Forces 

Gruber et al. (v) have given a rigorous derivation of sum rules for 
inhomogeneous Coulomb systems, under the assumption that the correla- 
tions decay fast enough. These rules state that the total excess charge 
carried by a particle (i.e., its own charge plus the charge of the screening 
cloud it induces in its vicinity) is zero (perfect screening), and that this 
excess charge has no dipole nor quadrupole moment. On the basis of a 
heuristic argument, we state the following more general rule: 

If the two-point correlation functions decay faster than any inverse- 
power law in every direction, the total excess charge carried by a particle is 
zero and has no electrical moment of any order. 

The argument for this statement is that, if the excess charge had a 
2"-pole electrical moment, this moment would create at a large distance r 
an electrostatic potential decaying as r 2-" -~  (for a ~,-dimensional system), 
and therefore would induce an excess charge density decaying as r 2-"-n ,  in 
contradiction with the assumption of no inverse-power law correlations. 

The sum rule can be tested on the exactly known bulk correlation 
functions (3) of the two-dimensional one-component plasma at F = 2. The 
inhomogeneity in the system can be introduced by fixing one of the 
particles at the origin and considering it as an external charge. In terms of 
the n-body densities p(n) (r~,r2 . . . . .  rn) of the homogeneous system, the 
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one- and two-body densities of the inhomogeneous system are 

p(2)(0, r,) 
p(l) ( r l )  _ P - -  p[ 1 - exp ( -  r l  2) ] 

and 

(4.1) 

p(3)(0, q, r2) 
0/(2) (r,, r2) - 

P 

= ; ( l  - e x p ( - 4 ) -  exp(-r  h - exp E - ( r 2 -  r,) 2] 

+ 2 e x p ( - 4 - r ~  + ,',r2cosO)cos(r,r2sinO)) (4.2) 

where 0 is the angle (rl, r2). The truncated two-body density 

p(2) 0/(2) ,T = (r l ,  r2) - -  p ( l ) (r l )p~( l ) (r2)  ( 4 . 3 )  

decays like a Gaussian for large values of r 2, and therefore the conditions 
of applicability of the sum rule are fulfilled. The excess charge density 
carried by particle 1 is, at r 2, 

~,~ (r,,r2) 
c(r 2 I r,) = e 6(r 2 - rl) + (4.4) 

0/(1)(n) 

The sum rule states that the two-dimensional 2n-pole moment of c(r2]r,) 
should vanish: 

~0oo r27r dr 2 r2J ~ dO r~cos(nO)c(r 2 I r l )  = 0 (4.5) 

That (4.5) is satisfied for all non-negative integer values of n can indeed be 
checked by a rather straightforward calculation of the integral. 

Along a hard wall, as discussed in I, the pair correlation decays only 
like r-2 in two dimensions, and the conditions of applicability of the sum 
rule are not fulfilled. As discussed in I, only the monopole moment (i.e., the 
total excess charge) vanishes. 

4.2. Hard Wall with Zero Dielectric Constant 

In presence of a flat hard wall with zero dielectric constant, the sum 
rule discussed in Section 4.1 must be modified. The electrostatic potential 
at any point in the fluid is due to both the real charges and their images. 
Let us consider a particle at (x,y) and let us choose the origin at the 
intersection of the wall and of the normal to it drawn through the particle; 
the coordinates of the particle are now (x,0). The screening cloud is 
invariant under rotations around the x axis. Furthermore, since each charge 
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has an image of the same magnitude and sign, the total excess charge plus 
its image is symmetrical with respect to the plane of the wall x = 0. 
Therefore, with respect to the origin, the odd electrical moments of the real 
excess charge are canceled by their images and they do not contribute to 
the electrostatic field created in the fluid. The argument of Section 4.1 now 
applies only to the even moments. The sum rule becomes the following: 

If the two-point correlation functions decay faster than any inverse- 
power law in any direction, the real total excess charge carried by a particle 
is zero and has no even electrical moment of any order with respect to the 
projection of the particle on the wall. 

As discussed in Section 2, it is likely that the condition that the pair 
correlation decays faster than any inverse-power law is indeed always 
fulfilled near a wall of zero dielectric constant. 

The sum rule can be tested on the two-dimensional one-component 
plasma at F = 2. In Section 3.2, the pair correlation function was shown to 
decay exponentially along the wall, and faster in any other direction. The 
sum rule should be applicable; the densities (3.2) and (3.5) should obey the 
relation 

+ -x'>' , (x ,o> 

for all non-negative integer values of n. Showing that (4.6) is actually 
satisfied involves some algebra which is described in Appendix B. 

4.3. The Dipole Moment Sum Rule 

Blum et al. (8) have derived a sum rule which relates the dipole moment 
of the total excess charge carried by a particle of species a to the derivative 
of the density of that species with respect to the wall surface charge density. 
For  a one-component plasma in two dimensions, this sum rule becomes, in 
our notation, 

OP(1)(x)=-2~fle---2~ s  (4.7) 

This sum rule has been tested (8'1s) on the two-dimensional one- 
component plasma at F = f l e 2 / ~  - -  2 ,  in the case e w = (. It can also be 
tested when e W = 0, after some algebra, by using (3.2) and (B1). 

5. SURFACE STRUCTURE AND BULK PRESSURE 

The structure of a fluid near a wall determines the force it exerts on 
that wall, and therefore this structure must be related to the pressure. In the 
simplest case of a system of charged hard spheres in a medium of dielectric 
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constant e, near a uniformly charged plane hard wall with no image forces, 
Henderson et a/. (14'15) obtained the contact value theorem, which reads, for 
a u-dimensional system (u = 2, 3), 

p = k Ty, 0 (0) - - o2 (u = 2, 3) (5.1) 
ot s 

where p is the bulk pressure, p~(0) the number density of species a at the 
plane of closest approach to the wall, and - eo the surface charge density 
on the wall. 

The case where there are image forces was considered by Carnie and 
Chan. (16) They showed one must add to (5.1) a contribution from the 
image forces, which involves the two-body densities. 

The case where there is a uniformly charged background was consid- 
ered by Choquard eta/. (17) and Totsuji(18): There are several nonequiva- 
lent possible definitions of the pressure (17'19): Here, p is the bulk "thermal" 
pressure, i.e., - p  is the derivative of the free energy of an overall neutral 
system with respect to the volume; both the particles and the background 
are supposed to be subject to the volume change. One must then add to 
(5.1) a contribution involving the background density and the potential 
difference across the surface layer. 

The case where both image forces and a charged background are 
present can be dealt with by a straightforward addition of the above- 
mentioned contributions. For a one-component plasma, in a medium of 
dielectric constant E, and in presence of a hard wall of dielectric constant 
ew, we find, for a u-dimensional system (p = 2, 3) of point charges in a 
background, 

_ ( e w - e )  e: ~dx P(l'(x) + fo~dx'f dy ' P(r2'(x'x"lY'[)(x+ x') 

(5.2) 

to avoid divergences, when the image force is attractive, one may replace 
the point charges by hard spheres of diameter d. In the right-hand side of 
(5.2) the third term is the contribution from the background and the last 
term is the contribution from the image forces. 

Equation (5.2) can be tested on the two-dimensional one-component 
plasma for F = e2/(~kBT) = 2 and c w = ~ or 0. For e w = e = 1, (5.2) is 
equivalent to (I.3.32). For e w = 0, using (3.2), (B1), and the equation of 
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state (2~ 

we can also check (5.2) after some algebra (in that case, 0 (I) (0) vanishes). 

6, C O N C L U S I O N  

The main point of the present paper is the new sum rule of Section 2, 
which must be obeyed by the asymptotic form of the charge-charge 
correlation function along a hard wall. Algebraically decaying correlations 
are present for general values of the wall dielectric constant. There are two 
special cases. If the wall has zero dielectric constant, it is likely that the 
correlations decay faster than any inverse-power law. What happens if the 
wall is a perfect conductor is an open problem. 

The exact results which can be obtained for the two-dimensional 
one-component plasma provide a test for this new sum rule, as well as for 
other already known sum rules or their generalizations. 

A C K N O W L E D G M E N T  
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prior to publication. 

A P P E N D I X  A 

We study the asymptotic behaviors of the densities (3.2) and (3.5). 
As x - ~  ce, the dominant contributions to the integral in (3.2) come 

from two domains of t around _+(x + ~ro)~-, and �9 in (3.3) can be 
replaced by I in one domain and by - 1 in the other one. Therefore 

p( 1)(X)-- ----~--~ f ~ dt{exp[(t-x~/2-~ra,[2)aJ 
~/,7/- ,J- oo 

+exp[-(t+x~+~rm/-2)a]}=p (Al)  

and it is easy to see that the correction to (A1) decreases like a Gaussian. 
For studying the two-body density (3.5), one must investigate the 

one-body density (3.2) for complex values of the variable. Therefore, let us 
consider the function p (1) (X + iY). 

If X ~  +oo for a fixed value of Y, p(~(X+ iY)~o; this can be 
shown by the same argument as the one leading to (A1). 
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When both X and Y go to + oe, the behavior of p(1)(X -[- iY) is found 
by reexpressing (3.2) in terms of integrals in the complex t plane. The only 
singularities of the integrand in (3.2) are poles coming from the zeros of 
Q(t). One of these zeros is on the real axis at t = 0. All the other zeros are 
complex, and are in general associated in groups of four of the form 
t = +p +_ iq (p,q > 0), since Q(t) is odd and Q(t*) = Q*(t). Let q0 be the 
smallest value of q; the corresponding zeros are at t = +-Po + iqo. Let C be 
the contour which runs from - oe to + ~ along the real axis except in the 
vicinity of the origin where the contour skirts around the origin below it; 
obviously, the integration in (3.2) can be replaced by an integration along 
C, since the integrand is regular at the origin. Let C+ be the contour which 
runs parallel to the real axis from - oe + is to + oe + is, where s is some 
positive constant, and let C_ be the contour which runs parallel to the real 
axis from - ~  - is to + ~ - is. Let us choose for s a value such that 
0 < s < q0. In (3.2), we split the sinh into its two exponential parts; for one 
of them we shift the integration contour from C to C+ [the residue of the 
pole of Q - 1 ( 0  at t = 0 must be taken into account], and for the other 
exponential part we shift the integration contour from C to C_. We obtain 

p(l)(X + i Y ) = e x p [ - 2 ( X  + iY + ~ro) 2] 

I P • iAo+--~ fc+ dtexp[ t2+2(X+iY)t~]Q(,) 

P fr  d t e x p [ - t 2 - 2 ( X + i Y ) t ~ [ 2 ] }  
(A2) 

where the (pure imaginary) constant/A 0 is the contribution from the pole at 
t = 0 .  

From (A2), we can derive an upper bound for [O(I)(X + iY)l. Let us 
first consider the case o ~ 0. Then I Q-1(0[  remains finite along C+ and 
C _ ,  including at infinity, and therefore it has an upper bound B; writing 
t = u + is, we obtain 

fc dtexp[-t2 + 2(X + iY)t~/2 ] 
+ Q(t) 

< Bf_?duexp[s 2 -  2sY~/-2-u2+ 2Xm/2] 

=  ( exp(s 2 - 2 s r / S  + 2X2)  (A3) 
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A similar inequality holds for the integral along C _ .  Replacing each term 
in (A2) by its modulus or an upper bound to it, we obtain 

Ip(1)(X + iY)[ < exp(2 Y 2 -  4eraY)[ D e x p ( - 2 X  2) + Fexp( -2sY7~)]  

(o -<< (3) (A4) 

where D and F are positive constants independent of X and Y. In the case 
o > O, Q(u + is)~O as u-+ + oo, and the argument needs a slight modifi- 
cation: in the integrands in (A2), the numerators and the denominators are 
to be multiplied by cosh27rau~-. Then I Q(u + is)cosh27rou~/-21-1 has an 
upper bound along C+ and C _ ,  and one obtains by similar steps 

[p(')(X + iY)[ < exp(2YZ)ID'  e x p ( - 2 X  2) + F '  e x p ( -  2 s Y ~ ' )  ] 

(o > 0) (A5) 

where D '  and F '  are again positive constants independent of X and Y. 
Using (A4) or (A5) in (3.5), it is easy to see that [p(T2)(x,x',Iy ' -y ] ) ]  

decreases faster than e x p [ - ( x ' - x )  2] when both x' and lY ' -Y]  go to 
infinity. 

Let us now study the behavior of O(O(X + iY) when Y ~  + oz for a 
fixed value of X. We can derive a formula analogous to (A2), including 
explicitly now also the contributions from the four complex poles which are 
closest to the real axis. For this purpose, the constant s which defines the 
distance to the real axis of the contours C+ and C_ must now be chosen 
larger than qo (but small enough so that no other poles than t -  0 and 
t = +Po +- iqo lie between C+ and C ). We now obtain instead of (A2) 

p(l)(X + i Y ) . ~ e x p [ - 2 ( X  + iY + qTo) 2] 

X {iA o + iAlexpI2(X + iY)(po + iq0)f}- ] 

+ i A ~ e x p [ a ( x + i Y ) ( - p o + / q o ) ~ - ]  + ' ' "  } (A6) 

The dots in (A6) represent the contributions from the integrals on the 
contours C+ and C_;  these contributions, as seen from (A3), contain a 
factor exp(-2sY~/2)  which decreases faster than the factor e x p ( -  2q0 Y~2- ) 
which is present in (A6). Therefore (A6) is the asymptotic form of p(O (X + 
iY) as Y--> + oo. 

Using (A6) in (3.5), one finds the asymptotic form (3.7), where 
a = p0f2- and b = q0f2-. In the special case o = 0, Q(t) reduces to twice the 
error function qb(t), the complex zeros of which are tabulated(~2~; the 
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residues of exp(-t2)(I )- l(t) are all equal to 
special values listed after Eq. (3.7). 
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f~-/2, and one obtains the 

APPENDIX B 

We show that (3.2) and (3.5) obey (4.6). 
Using the integral representation (3.2) in (3.5), we find, after some 

rearrangements, 

dt exp ( -  t 2) 
p(~Z)(x,x',ly'[) = - p 2 8  exp[ -2 (x  + ~ro) e -  2(x '+  ~ra)2]f ~ 

_ ~ Q(t) 

X f ; ~  duexp( -u  2) sinh[x(t + u)~- 1 
r 

• sinh[x'(t + u)~[2 ]exp[ iy'(u - t)~-2 1 (B1) 

We want to compute 

Pz~ = fo~dx' f ? d/(x' + iy')2~p(2' (x,x' ,  [y'l) (B2) 

If we use the representation (B 1), its symmetries allow to replace (x' + iy') 2 
in (B2) by (1/2)dZ/du 2. Furthermore, for integrating upon x', we can use 
(3.3) where ~ has to be renamed x'~- and t has to be replaced by 
(t + u)/2. One obtains 

oo dt exp ( -  t 2) ~ du exp( -  u:) 
P2n=-P22' -n~[~exp[-2(x+~r~ Q(t) ;'-oo Q(u) 

• sinh[x(t  + u)~/2 ] ~u2~ {exp[ ( Q(---f- 

and, by integration by parts, 

P2n = - p 221- n~[~ exp [ - 2( x + 7to) 2] 

(o~ dt[ d2" [ exp(-u2) sinhIx(t X J--~ [ db! 2n [ Q(u) 
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The derivative in (B4) can be written as 

( ( d  1 d~2n[  exp(-U2) sinh2xtf~]} 
-~u + 2 -~ ) [ Q ( u ) u = , 

\2n 
_ s i n h 2 x t #  

+ sinh 2 x t ~  ~l t 

In  the curly bracket  of (B5), we can factorize out  

-d-uu + + 2 dt du 
and  this bracket  will be a sum of terms of  the form 

[ F ( t )  G ( t ) ]  

where the functions F and  G are such that  F(t)G(t) vanishes at infinity; 
therefore, these terms do not  contr ibute to the integral in (B4). Only  the 
first term of (B5) must  be kept, and it gives 

dt exp( -  t2)sinh 2xt~f2 
P2n = - 0 2 2 ~ - e x p [  - 2 (  x + Tra)2]x2nf_ L (B6) 

_ Q ( t )  

Since O~ = l in our  units, (B2), (B6), and (3.2) result into (4.6). 
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